Kemmish, H. J. \& Hamor, T. A. (1988). Acta Cryst. C44, 1653-1656. Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Universities of York, England, and Louvain, Belgium.
Messinger, J. \& Buss, V. (1992). J. Org. Chem. 57, 3320-3328.
Orioli, P. L. \& Lip, H. C. (1974). Cryst. Struct. Commun. 3, 477-485.
Petcher, T. J. \& Weber, H. J. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415-1420.
Sheldrick, G. M. (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Svensson, C. \& Timby, L. (1981). Cryst. Struct. Commun. 10, 429439.

Truex, T. J. \& Holm, R. H. (1972). J. Am. Chem. Soc. 94, 4529-4538.
Uhrhammer, R., Black, D. G., Gardner, T. G., Olsen, J. D. \& Jordan, R. F. (1993). J. Am. Chem. Soc. 115, 8493-8494.

Acta Cryst. (1998). C54, 1033-1036

2-Phenyl-3-(5,6,7,7a-tetrahydro-1H,3H-pyrrolo[1,2-c]oxazol-3-ylidene)-1-propene-1,1-dicarbonitrile and 4-(4-Methoxy-phenyl)-2,6-bis(methylthio)pyridine-3carbonitrile

Mathew George, ${ }^{a}$ Suresh Das, ${ }^{a}$ C. V. Ashokan, ${ }^{b}$ Nigam P. Rath ${ }^{c}$ and M. V. George ${ }^{a, d, e}$
${ }^{a}$ Photochemistry Research Unit, Regional Research Laboratory (CSIR), Trivandrum 695 019, India, ${ }^{\text {b }}$ School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, India, 'Department of Chemistry, University of Missouri-St Louis, 8001 Natural Bridge Road, St Louis, MO 63121, USA, ${ }^{d}$ Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA, and ${ }^{e}$ Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore 560 064, India. E-mail: nigam_rath@umsl.edu
(Received 13 June 1997; accepted 1 December 1997)

Abstract

The reaction of 3-aryl-2-cyano-5,5-bis(methylthio)penta-2,4-dienenitrile, (1), with L-(-)-2-hydroxymethylpyrrolidine, (2), gave two types of product, the normal substitution product, (3), and a pyridine derivative, (4). The structures of two representative examples, 2-phenyl-3-(5,6,7,7a-tetrahydro-1 $\mathrm{H}, 3 \mathrm{H}$-pyrrolo $[1,2-\mathrm{c}]$ -oxazol-3-ylidene)-1-propene-1,1-dicarbonitrile, ($3 a$), as its hemibenzene solvate, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O} .0 .5 \mathrm{C}_{6} \mathrm{H}_{6}$, and 4-(4-methoxyphenyl)-2,6-bis (methylthio) pyridine-3carbonitrile, ($4 b$), $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}_{2}$, have been unambiguously established by X-ray crystallographic analysis. The molecular packing of ($4 b$) involves loosely held dimers, with $\mathrm{S} 1 \cdots 1^{\prime}$ distances of 3.424 (1) \AA.

Comment

It has been shown recently (Peseke et al., 1994) that the reaction of certain secondary amines with 3-aryl-2-cyano-5,5-bis(methylthio)penta-2,4-dienenitriles, (1), could lead to the 5 -monoamino- or 5,5 -diaminosubstitution product or a pyridine derivative, depending upon the reaction conditions. As part of an ongoing research programme on the design and synthesis of donor-acceptor push-pull polyenes capable of second harmonic generation, we have synthesized compounds ($3 a$) and ($3 b$) from the reaction of (1) and $\mathrm{L}-(-)-2-$ hydroxymethylpyrrolidine, (2) (George et al., 1997). It was observed that ($1 a$) and ($1 b$) undergo an intramolecular rearrangement to give the pyridine derivatives (4a) and (4b), respectively, when refluxed in dry methanol in the presence of any base, such as pyridine or secondary amines, or even potassium carbonate, as catalyst.

(1a)
(2)
(1b)

For (a) $R=\mathrm{H}$, and (b) $R=\mathrm{OCH}_{3}$

We report herein the X-ray structures of compounds ($3 a$) and ($4 b$) (Figs. 1 and 2). Molecule (3a) crystallizes with half a molecule of benzene located on a twofold rotation axis. The absolute configuration of this compound could not be determined reliably [Flack (1983) parameter $=-0.4(20)$]. The molecular structure of (3a) incorporates a diene-dicarbonitrile skeleton attached to a pyrrolo-oxazole unit at one end and a phenyl substituent at the C2 position. The mean planes containing the phenyl ring (C6-C11, mean deviation $0.005 \AA$) and the diene-dicarbonitrile moiety ($\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4, \mathrm{~N} 1, \mathrm{C} 5$ and N 2 , mean deviation $0.005 \AA$) make an angle of $84.5(2)^{\circ}$ with each other.

Compound ($4 b$) is a pyridine derivative with methylthio substituents at C 2 and C 6 , a cyano substituent at C 3 and a p-methoxyphenyl group at C4. The two sixmembered rings are planar within experimental error (phenyl ring C8-C13, mean deviation $0.005 \AA$; pyridine ring N1, C2-C6, mean deviation $0.005 \AA$) and form an angle of $40.89(9)^{\circ}$ with each other. The nitrile group is fully conjugated with the $\mathrm{C} 3=\mathrm{C} 4$ double bond [torsion angle $\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 3-\mathrm{C} 4=-179(1)^{\circ} ; \cos ^{2}($ angle $)=1$ (Jones et al., 1997)].

Fig. 1. View of the molecule of (3a) with 50% probability ellipsoids.

Fig. 2. View of the molecule of ($4 b$) with 50% probability ellipsoids.

Crystal-packing diagrams for (3a) and (4b) are presented in Figs. 3 and 4, respectively. Compound (4b) crystallizes with discrete molecules in the lattice, and the molecular packing consists of loosely held dimers with $\mathrm{S} 1 \cdots \mathrm{~S} 1(-x,-y, 1-z)$ distances of $3.424(1) \AA$. The molecules pack in a 'head-to-tail' fashion down the a axis. In ($3 a$), the solvent benzene molecules are located perpendicular to the molecular-packing plane. For a material to exhibit non-linear optical properties, it must lack a centre of symmetry. Furthermore, the mol-
ecules must be arranged in such a way in the lattice so that the net dipole of the bulk will be large (the effects of the individual dipoles should add, not cancel one another; Singer et al., 1987). Compound (3a) crystallizes in a chiral space group, which satisfies the first condition. Even though individual molecules of (3a) have a net dipole, the bulk packing arrangement (head-totail) would probably result in the cancellation of the net dipole. More sophisticated calculations or experimental measurements would be required to establish this property, which is beyond the scope of this work.

Fig. 3. The packing of (3a) viewed down the a axis.

Fig. 4. The packing of $(4 b)$ viewed down the b axis.

Experimental

The substitution products ($3 a$) and ($3 b$) were obtained as major products on refluxing ($1 a$) and ($1 b$) in base-free tetrahydrofuran. Compounds ($3 a$) (m.p. 406 K) and ($4 b$) (m.p. 431 K) were obtained as good quality crystals by recrystallization from a mixture of chloroform and hexane (2:1), and a mixture of ethyl acetate and hexane ($1: 4$), respectively.

Compound (3a)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O} .0 .5 \mathrm{C}_{6} \mathrm{H}_{6}$
$M_{r}=316.37$
Tetragonal
$P 4{ }_{3} 2_{1} 2$
$a=9.8769(1) \AA$
$c=35.3642(2) \AA$
$V=3449.89(5) \AA^{3}$
$Z=8$
$D_{x}=1.218 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens CCD diffractometer
ω scans
Absorption correction: none
73530 measured reflections
3773 independent reflections
2701 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.118$
$S=1.043$
3767 reflections
219 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0528 P)^{2}\right.$ $+0.4285 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.133 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.127 \mathrm{e}^{-3}$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for $(3 a)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
O2 ${ }^{\prime}$	0.70980 (15)	0.47391 (14)	0.07500 (4)	0.0521 (4)
NI	0.6390 (2)	0.6815 (2)	0.23384 (6)	0.0701 (6)
N2	0.5432 (2)	1.0106 (2)	0.15521 (7)	0.0739 (6)
N3 ${ }^{\prime}$	0.7479 (2)	0.3203 (2)	0.11890 (5)	0.0491 (4)
Cl^{\prime}	0.7676 (2)	0.3567 (2)	0.05503 (6)	0.0601 (6)
Cl	0.6237 (2)	0.7653 (2)	0.16503 (5)	0.0456 (5)
C2	0.6550 (2)	0.6798 (2)	0.13463 (5)	0.0408 (4)
C3'	0.7193 (2)	0.4497 (2)	0.11213 (5)	0.0439 (5)
C3	0.6940 (2)	0.5457 (2)	0.14001 (5)	0.0441 (5)
C4'	0.8160 (2)	0.2602 (2)	0.15152 (6)	0.0610 (6)
C4	0.6317 (2)	0.7197 (2)	0.20332 (6)	0.0525 (5)
C5 ${ }^{\prime}$	0.8793 (2)	0.1326 (2)	0.13461 (7)	0.0667 (6)
C5	0.5796 (2)	0.9009 (2)	0.15940 (6)	0.0533 (6)
C6 ${ }^{\prime}$ A	0.7696 (2)	0.2438 (2)	0.08382 (6)	0.0542 (5)
C6 ${ }^{\prime}$	0.8983 (2)	0.1658 (2)	0.09276 (7)	0.0617 (6)
C6	0.6419 (2)	0.7416 (2)	0.09625 (5)	0.0422 (4)
C7	0.5179 (2)	0.7467 (3)	0.07829 (6)	0.0673 (7)
C8	0.5041 (3)	0.8085 (3)	0.04344 (7)	0.0863 (10)
C9	0.6146 (3)	0.8673 (3)	0.02660 (7)	0.0723 (7)
C10	0.7379 (2)	0.8635 (2)	0.04387 (6)	0.0626 (6)
C11	0.7516 (2)	0.8007 (2)	0.07856 (6)	0.0540 (5)
CIS	0.3822 (4)	0.3822 (4)	0	0.1008 (14)
C2S	0.2486 (4)	0.4173 (3)	0.00247 (9)	0.0991 (10)
C3S	0.1516 (3)	0.3180 (4)	0.00219 (8)	0.0930 (10)
C4S	0.1859 (3)	0.1859 (3)	0	0.0860 (12)

Compound (4b)

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}_{2}$
$M_{r}=302.40$
Monoclinic
$P 2_{1} / c$
$a=10.598$ (2) \AA
$b=7.5746(10) \AA$
$c=19.053$ (4) \AA
$\beta=103.026(11)^{\circ}$
$V=1490.1(4) \AA^{3}$
$Z=4$
$D_{x}=1.348 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$R_{\mathrm{int}}=0.10$
$\theta_{\text {max }}=27^{\circ}$
$h=-8 \rightarrow 9$
$k=0 \rightarrow 13$
$l=0 \rightarrow 47$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 8192 reflections
$\theta=2.0-25.0^{\circ}$
$\mu=0.077 \mathrm{~mm}^{-1}$
$T=223$ (2) K
Irregular
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
Yellow

Extinction correction:
SHELXTL-Plus (Sheldrick, 1995)

Extinction coefficient: 0.0036 (6)

Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)

Flack parameter $=-0.4(20)$
Data collection
ω scans
4727 measured reflections
3579 independent reflections
2197 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.023$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.114$
$S=1.015$
3542 reflections
181 parameters

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 45 reflections
$\theta=4.22-12.52^{\circ}$
$\mu=0.354 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Irregular
$0.5 \times 0.4 \times 0.2 \mathrm{~mm}$
Colourless

Siemens $P 4$ diffractometer $\quad \theta_{\text {max }}=28^{\circ}$
$h=-1 \rightarrow 13$
Absorption correction: none $\quad k=-1 \rightarrow 10$
$l=-25 \rightarrow 24$

H atoms riding
3 standard reflections every 97 reflections
intensity decay: 5.92\%

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0376 P)^{2}\right. \\
&+0.5282 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.236 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.197 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for $(4 b)$

	x	y	z	$U_{\text {eq }}$
S1	0.07935 (8)	0.19310 (10)	0.52814 (4)	0.0637 (2)
S2	0.22234 (8)	0.74596 (11)	0.69884 (4)	0.0651 (2)
Ol	0.5527 (2)	0.9367 (2)	0.31134 (9)	0.0556 (5)
N1	0.1570 (2)	0.4805 (3)	0.60621 (9)	0.0425 (5)
N2	0.1837 (2)	0.3014 (3)	0.37062 (12)	0.0675 (7)
C2	0.1557 (2)	0.3997 (3)	0.54379 (12)	0.0404 (5)
C3	0.2143 (2)	0.4703 (3)	0.49085 (11)	0.0376 (5)
C4	0.2818 (2)	0.6309 (3)	0.50435 (11)	0.0374 (5)
C5	0.2815 (2)	0.7150 (3)	0.56901 (11)	0.0418 (5)
C6	0.2175 (2)	0.6366 (3)	0.61748 (11)	0.0411 (5)
C7	0.1982 (2)	0.3778 (3)	0.42339 (13)	0.0452 (6)
C8	0.3527 (2)	0.7078 (3)	0.45269 (11)	0.0370 (5)
C9	0.4268 (2)	0.6029 (3)	0.41748 (11)	0.0416 (5)
C10	0.4953 (2)	0.6738 (3)	0.37057 (12)	0.0419 (6)
C1!	0.4905 (2)	0.8536 (3)	0.35756 (12)	0.0414 (5)
C12	0.4182 (2)	0.9613 (3)	0.39281 (12)	0.0479 (6)
C13	0.3512 (2)	0.8895 (3)	0.44013 (12)	0.0426 (6)
C14	0.0178 (3)	0.1626 (4)	0.60727 (14)	0.0628 (8)
C15	0.6161 (3)	0.8286 (4)	0.26859 (14)	0.0580 (7)
C16	0.1309 (3)	0.6037 (5)	0.74337 (14)	0.0739 (9)

Preliminary examination and data collection were performed employing Siemens CCD and $P 4$ automated single-crystal X-ray diffractometers using graphite-monochromated Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$). In the case of the CCD data set [for (3a)], ω-scan and double-pass methods were used for data collection. The first 50 frames were recollected at the end of the data collection to monitor crystal decay. SADABS correction (Blessing, 1995) was applied to the raw data. The structures were solved by direct methods. The non-H atoms were refined (least squares) anisotropically to convergence. H atoms were treated using an appropriate riding model $[\mathrm{C}-\mathrm{H}=$ $0.94 \AA$ and $U(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$, or, for methyl H atoms, $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U(\mathrm{H})=1.5 U_{\mathrm{eq}}$ (carrier)].

Data collection: SMART (Siemens, 1996b) for (3a); XSCANS (Siemens, 1996c) for ($4 b$). Cell refinement: SAINT (Siemens, 1996a) for ($3 a$); XSCANS for ($4 b$). Data reduction: SAINT for (3a); SHELXTL-Plus (Sheldrick, 1995) for (4b). For both compounds, program(s) used to solve structures: SHELXTL-Plus; program(s) used to refine structures: SHELXTL-Plus; molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

We thank the Council of Scientific and Industrial Research, Government of India (MG, SD and MVG), the Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India (MVG), NSF (CHE9101834), Missouri Research Board, Center for Molecular Electronics and Department of Chemistry of the University of Missouri-St. Louis (NPR), and the Office of the Basic Energy Sciences of the US Department of Energy (MVG, in part), for the financial support of this work. This is contribution No. RRLT-PRU-72 from the Regional Research Laboratory, Trivandrum, India, and No. NDRL-4010 from the Notre Dame Radiation Laboratory, USA.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1077). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
George, M., Asokan, C. V. \& Das, S. (1997). Unpublished results.
Jones, R., Rattray, A. G. M., Scheffer, J. R. \& Trotter, J. (1997). Acta Cryst. C53, 1162-1164.
Peseke, K., Zahn, K. \& Michalik, M. (1994). J. Prakt. Chem. 336, 357-360.
Sheldrick, G. M. (1995). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996a). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996b). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996c). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Singer, K. D., Lalama, S. L., Sohn, J. E. \& Small, R. D. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1, edited by D. S. Chemla \& J. Zyss, pp. 437-469. New York: Academic Press.

Acta Cryst. (1998). C54, 1036-1038

N, N^{\prime}-Methylenebis[(S)-5-phenyloxazolidine]

Pascale Lemoine, ${ }^{a}$ Bernard Viossat, ${ }^{b}$ Pierre-Guy
Martin c and David J. Attren ${ }^{c}$
${ }^{a}$ Laboratoire de Physique, Faculté des Sciences Pharmaceutiques et Biologiques de Paris V, 4, avenue de l'Observatoire, 75270 Paris CEDEX 06, France, ${ }^{\text {b }}$ Laboratoire de Chimie Générale, Faculté de Pharmacie, 34, rue du Jardin des Plantes, BP 199, 86005 Poitiers CEDEX, France, and 'Laboratoire de Chimie Thérapeutique associé au CNRS, Faculté des Sciences Pharmaceutiques et Biologiques de Paris V, 4, avenue de l'Observatoire, 75270

Paris CEDEX 06, France. E-mail: lemoine@pharmacie.univparis5.fr
(Received I4 July 1997; accepted 6 November 1997)

Abstract

The $2: 3$ condensation product, $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$, formed by reaction of (S)-(+)-2-amino-1-phenylethanol with formaldehyde has an N, N^{\prime}-methylenebis(oxazolidine) heterocyclic skeleton. The two oxazolidine rings have envelope-type conformations, with their N atoms displaced by 0.604 (5) and 0.537 (6) \AA from the mean planes formed by the remaining four atoms of each ring. The dihedral angle between the two planes is $110.2(2)^{\circ}$.

Comment

The condensation product of (\pm)-2-amino-1-phenylethanol with formaldehyde in a respective molar ratio of 2:3 was first described as a synthetic reagent in 1994 and was assumed to have an N, N^{\prime}-methylenebis(oxazolidine) heterocyclic skeleton (Pevarello et al., 1994). While it has been shown that a similar aminoalcohol, (-)-norephedrine, with formaldehyde gives a 2:3 adduct which has this type of structure (Engel et al., 1982), another related aminoalcohol, (-)-2-amino-2-phenylethanol, gives a quite different isomeric 2:3 adduct, having a 1,6 -diaza-3,8-dioxabicyclo[4.4.1]undecane skeleton (Aitken et al., 1991). This latter observation casts some doubt on the assumption of the structure of the title compound, (I), and since firm knowledge of its molecular structure is necessary in order to understand its chemical reactivity, confirmation was sought by an X-ray diffraction study.

(I)

The title compound consists of two 5-phenyloxazolidine rings with an $-\mathrm{NCH}_{2} \mathrm{~N}$ - bridge. Corresponding bond angles and distances in each of the

